852 research outputs found

    Carleman estimate for an adjoint of a damped beam equation and an application to null controllability

    Get PDF
    In this article we consider a control problem of a linear Euler-Bernoulli damped beam equation with potential in dimension one with periodic boundary conditions. We derive a new Carleman estimate for an adjoint of the equation under consideration. Then using a well known duality argument we obtain explicitly the control function which can be used to drive the solution trajectory of the control problem to zero state

    Reionization constraints using Principal Component Analysis

    Full text link
    Using a semi-analytical model developed by Choudhury & Ferrara (2005) we study the observational constraints on reionization via a principal component analysis (PCA). Assuming that reionization at z>6 is primarily driven by stellar sources, we decompose the unknown function N_{ion}(z), representing the number of photons in the IGM per baryon in collapsed objects, into its principal components and constrain the latter using the photoionization rate obtained from Ly-alpha forest Gunn-Peterson optical depth, the WMAP7 electron scattering optical depth and the redshift distribution of Lyman-limit systems at z \sim 3.5. The main findings of our analysis are: (i) It is sufficient to model N_{ion}(z) over the redshift range 2<z<14 using 5 parameters to extract the maximum information contained within the data. (ii) All quantities related to reionization can be severely constrained for z<6 because of a large number of data points whereas constraints at z>6 are relatively loose. (iii) The weak constraints on N_{ion}(z) at z>6 do not allow to disentangle different feedback models with present data. There is a clear indication that N_{ion}(z) must increase at z>6, thus ruling out reionization by a single stellar population with non-evolving IMF, and/or star-forming efficiency, and/or photon escape fraction. The data allows for non-monotonic N_{ion}(z) which may contain sharp features around z \sim 7. (iv) The PCA implies that reionization must be 99% completed between 5.8<z<10.3 (95% confidence level) and is expected to be 50% complete at z \approx 9.5-12. With future data sets, like those obtained by Planck, the z>6 constraints will be significantly improved.Comment: Accepted in MNRAS. Revised to match the accepted versio
    • …
    corecore